Guidance Note: GN02.

Bulk Storage of Rubber tyres
Including Shredded and Crumbed Tyres
Version 2. 2020
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>i</td>
</tr>
<tr>
<td>Table of Figures</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Tables</td>
<td>iii</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Purpose</td>
<td>1</td>
</tr>
<tr>
<td>3. Issues</td>
<td>1</td>
</tr>
<tr>
<td>4. Legislation</td>
<td>2</td>
</tr>
<tr>
<td>5. Planning a Tyre Storage and/or Processing Facility</td>
<td>3</td>
</tr>
<tr>
<td>5.1 Fire Risk Assessment</td>
<td>3</td>
</tr>
<tr>
<td>5.2 Emergency Preparedness - Pre–Incident Emergency Plan</td>
<td>3</td>
</tr>
<tr>
<td>6. Acceptable and Unacceptable Rubber Tyre Storage</td>
<td>4</td>
</tr>
<tr>
<td>6.1. Acceptable Storage</td>
<td>4</td>
</tr>
<tr>
<td>6.2. Unacceptable Storage</td>
<td>7</td>
</tr>
<tr>
<td>7. Licensing of Tyre Storage Facilities</td>
<td>9</td>
</tr>
<tr>
<td>7.1. Size of Tyre Stacks and Piles</td>
<td>9</td>
</tr>
<tr>
<td>7.2 Stacks and Piles</td>
<td>9</td>
</tr>
<tr>
<td>8. External Tyre Storage</td>
<td>11</td>
</tr>
<tr>
<td>8.1. External Tyre Storage Classification</td>
<td>11</td>
</tr>
<tr>
<td>8.2. Small Tyre Facilities - Minimum Boundary Clearances for External Tyre Storage (less than 50 tonnes)</td>
<td>11</td>
</tr>
<tr>
<td>8.3. Large Tyre Facilities – Minimum Boundary Clearances for External Tyre Storage (50 tonnes or more)</td>
<td>12</td>
</tr>
<tr>
<td>9. Internal Tyre Storage</td>
<td>13</td>
</tr>
<tr>
<td>9.1. Smoke and Heat Venting</td>
<td>13</td>
</tr>
<tr>
<td>9.2. Sprinkler Protection</td>
<td>14</td>
</tr>
<tr>
<td>9.3. Internal Storage Configuration</td>
<td>14</td>
</tr>
<tr>
<td>9.4. Non-Sprinkler Protected Buildings</td>
<td>14</td>
</tr>
<tr>
<td>9.5. Sprinkler Protected Buildings</td>
<td>15</td>
</tr>
<tr>
<td>10. Site Access for Emergency Fire Services Appliances</td>
<td>16</td>
</tr>
<tr>
<td>11. Site Containment of Environmental Contaminants</td>
<td>17</td>
</tr>
<tr>
<td>11.1. Containment of Firefighting Water, Oil and Other Liquid Products of Combustion</td>
<td>17</td>
</tr>
<tr>
<td>11.2. Sprinkler Protected (internal storage)</td>
<td>17</td>
</tr>
</tbody>
</table>
11.3. Non-Sprinkler Protected (internal and external storage) 17
11.4. Fixed Monitors .. 18
12. Water Supply (Fire Hydrant) Requirements .. 18
12.1. Practical Experience .. 20
12.2. Comparisons with Other Materials ... 20
12.3. Factors Increasing Risk .. 21
12.4. Mitigation of Ignition Risk ... 21
13. Fire Fighting .. 21
13.1. Design Guidelines to Minimise Internal Heating of Tyre Shred Fills 22
13.2. Maximum Dimensions and Minimum Separation Distances for Rows of Shred or Crumb ... 22
13.3. Fire Water Containment .. 24
Conclusion .. 24
References .. 25
Legislation: .. 25
TABLE OF FIGURES

Figure 1: Tyres Bundled and Stacked ... 4
Figure 2: Rack and Pallet System .. 5
Figure 3: Horizontal System .. 5
Figure 4: Portable Systems .. 6
Figure 5: Laced Storage - For Outdoors Only! ... 6
Figure 6: "Tread up" Storage with Inadequate Separation Gaps 7
Figure 7: Extremely Challenging Firefighting Scenario 8
Figure 8: Haphazard Storage with Possible Ignition Source 8
Figure 9: Maximum Tyre Stack Height (elevated view) 9
Figure 10: Minimum Separation Distance between 4 Stacks in 1 Pile 10
Figure 11: Minimum Separation Distances between Piles 10
Figure 12: Minimum Boundary Clearances for Small Tyre Facilities 12
Figure 13: Minimum Boundary Clearance for Large Tyre Facilities............... 13
Figure 14: Minimum Clearance Distance - Non-Sprinkler Protected Buildings... 15
Figure 15: Site Entry Requirements - Any External Storage 16
Figure 16: Raw Material (whole tyres), tyre shred and tyre crumb 20
Figure 17: Cross section dimensions of shred and crumb rows 23
Figure 18: Plan view of separation distances .. 23

TABLE OF TABLES

Table 1: Reference table .. 19
NOTE: GN02

BULK STORAGE OF RUBBER TYRES INCLUDING SHREDDED AND CRUMBED TYRES

1. INTRODUCTION

This Guidance Note (GN) focuses on collectors and recyclers of used tyres. These facilities generally store large quantities of tyres in stockpile and usually carry more risk than storage of new product. However, this GN may be used by any business which stores a significant quantity of tyres on a permanent or temporary basis.

The general principals within this GN may be applied to storage practices of any other combustible materials that are stored for future processing or removal.

2. PURPOSE

This GN sets out the minimum fire safety recommendations for the storage of rubber tyres, including those in open yards (external) or stored within buildings and structures (internal).

Operators of any new facility intending to store new or used rubber tyres and related subsidiary products (including shredded and/or crumbed tyres) and existing facilities that are being modified to store rubber tyres, should comply with these recommendations.

3. ISSUES

Rubber tyres are not easily ignitable, however when on fire, they are extremely difficult to extinguish. The calorific value of rubber tyres is nearly 40,000 kilojoules/kilogram, which is generally twice that of other common combustible materials.

Tyres are considered a “Special/High Hazard” when burning; the high calorific value stored in tyres is released during combustion as heat and smoke and typically results
in a very hot fire with enormous volumes of black smoke being generated. This presents a high hazard to the community, firefighters and environment.

Pyrolytic oil is also produced by tyre fires and needs to be recovered to minimise the environmental impact to soil and water. The physical properties of rubber tyres makes extinguishing tyre fires very difficult. Tyres are designed to absorb and retain heat and as such they do not readily cool when doused with water. The shape of tyres and informal stacking arrangements result in protected areas within the stack which are difficult to penetrate with extinguishing media. Rubber naturally repels water resulting in extinguishing media quickly being shed and drained away.

Due to these properties, tyre stacks involved in fire must be physically separated in order to be extinguished. Adopting the recommendations provided in this GN will assist DFES to effectively contain and extinguish tyre fires.

4. LEGISLATION

The storage, handling, transportation and disposal of used tyres are specifically controlled under the following Western Australian legislation:

- Currently, all facilities that store 100 tyres or greater of old (used) rubber tyres are required to be licensed by the Department of Water and Environment Regulations (DWER)
- Environmental Protection Regulations 1987 (Part 6, Schedule 1 and Schedule 5) - Storage, Handling, Transportation and Disposal
- Environmental Protection (Controlled Waste) Regulations 2004 – Transport
- Both the Environmental Protection Act 1986 and the Waste Avoidance and Resource Recovery Act 2007 have provisions that can be relevant to the control of used tyre waste
- Due to the hazardous nature of rubber tyre storage, the Western Australian Planning Commission may require any proposed facility be subject to a ‘Fire Safety Study’
- Building Act 2011 & Building Regulations 2012 - empowering legislation of the National Construction Code (NCC) where there are structures involved with the storage / processing facility

DFES encourages Fire Safety Studies to be undertaken in line with the New South Wales Department of Planning - Hazardous Industry Planning Advisory Paper (HIPAP) No.2. – Fire Safety Study Guidelines.

If the facility includes a proposed NCC Class 7 Warehouse Building or NCC Class 8 Process/Production Building having a floor area greater than 500m², the building surveyor engaged to oversee compliance will be required under the Building Regulations 2012 to submit plans to the FES Commissioner (DFES Built Environment Branch) for
comment prior to issuing a Certificate of Design Compliance to the Permit Issuing Authority. Building surveyors should immediately consider a bulk tyre storage facility as a Special Hazard under the provisions of BCA Part E1.10 “Provisions for Special Hazards” when ensuring compliance with the BCA.

5. PLANNING A TYRE STORAGE AND/OR PROCESSING FACILITY

The prevention of a fire is the primary defence for any facility where tyres are stored, repurposed and disintegrated and therefore the design of the facility is crucial.

A good design must ensure that all relevant requirements are met and where possible exceeded; and that the risk of fire at your facility is minimised as far as practicable. Whether designing a new facility, or upgrading an existing site, good fire emergency preparation involves engaging with your local DFES Career Fire Station or DFES Regional Office at design stages and continuing this liaison during operation.

Operators must also collaborate with all other relevant authorities incorporating all possible fire prevention methods into the layout and design of a facility.

5.1 Fire Risk Assessment

A fire risk assessment should be performed to identify all fire hazards at the site, determine the likelihood that a fire will occur, then determine the consequences of credible fire scenarios in terms of life safety, property protection, e.g. closure of runways, roads or rail and environmental impact.

The fire risk assessment will determine all the resources and equipment required to manage the consequences of the identified fire scenarios. The fire risk assessment should be performed in consultation with DFES Operations, and with the DFES Built Environment Branch where there are buildings involved.

It is expected that, depending on site conditions, equipment available, emergency response procedures, available staff and level of training, etc., the fire risk assessment may require appropriate fire modelling including emission and dispersion modelling to determine possible off-site extents of toxic products of combustion.

5.2 Emergency Preparedness - Pre–Incident Emergency Plan

It is recommended that operators develop and document a pre-incident plan or a Fire and Emergency Services – Operational Pre-Plan (OPP) for the site that includes:

- Location of fire hydrants, sprinkler/hydrant boosters, fire service tapping(s), sprinkler control valves, fire pumps, static water tanks, etc.
6. ACCEPTABLE AND UNACCEPTABLE RUBBER TYRE STORAGE

The following pictures are examples of acceptable and unacceptable storage configurations for both new and used tyres.

6.1. Acceptable Storage

- **Bundled Tyres** - A number of tyres strapped together in bundles and stacked either within a racking system or on their sides, figure 1.

![Figure 1: Tyres Bundled and Stacked](image)
• **Pallet Systems** - A system containing a number of tyres which includes stringers for material handling equipment, figure 2.

![Figure 2: Rack and Pallet System](image)

• **Horizontal Systems** - A system (e.g. pallets, shelving, and racks) where tyres are stacked upright along a horizontal length exceeding 1.5m, figure 3.

![Figure 3: Horizontal System](image)
GUIDANCE NOTE: GN02

BULK STORAGE OF RUBBER TYRES INCLUDING SHREDDED AND CRUMBED TYRES

- **Portable Systems** - Small portable systems can be readily moved by fork lift, figure 4.

![Portable Systems](image)

Figure 4: Portable Systems

- **Laced Storage - For Outdoor Storage Only!** - Tyres are stacked in an overlapping manner to create a woven or laced arrangement. This configuration helps limit fire spread as it reduces ability of burning tyres to fall and roll into unignited stock, figure 5.

![Laced Storage](image)

Figure 5: Laced Storage - For Outdoors Only!
6.2. Unacceptable Storage

- **Storage of Rubber Tyres - Internal and External** - Tyres stacked on their treads, known as “Tread up” storage, is not acceptable (unless they are retained within a suitable rack storage system). In the event of fire, tread up tyres easily roll away and ignite neighbouring stacks, figure 6.

![Figure 6: “Tread up” Storage with Inadequate Separation Gaps](image)

Uncontrolled Storage

- Fire Service access to this storage facility in the United States has not been provided. Timely extinguishment of an established fire would not be possible. Also, establishing an adequate fire-fighting water supply would be extremely challenging, or impossible, figure 7.
• This haphazard method of storage has vegetation growing throughout which will provide an ignition source during summer months, figure 8.

Figure 7: Extremely Challenging Firefighting Scenario

Figure 8: Haphazard Storage with Possible Ignition Source
7. LICENSING OF TYRE STORAGE FACILITIES

If rubber tyre storage is required to be greater than one pile (>1 x group of 4 stacks), the tyre storage facility is required to be licenced by the Department of Water and Environment Regulation (DWER) as the storage capacity may exceed 50 tonnes in weight.

7.1. Size of Tyre Stacks and Piles

Individual stacks should not exceed 3.7m in height, 60m² in area and/or 12.5 tonnes in weight, figure 9.

![Figure 9: Maximum Tyre Stack Height (elevated view)](image)

7.2 Stacks and Piles

A maximum of four (4) individual stacks can be grouped. Each group of 4 stacks is referred to as a pile. A clear separation distance of not less than 2.5m at the base must be maintained between each stack, figure 10.
A clear separation distance of not less than 18 metres must be maintained between each pile (of 4 stacks), figure 11.
8. **EXTERNAL TYRE STORAGE**

An external storage site should be level, clear of all rubbish and combustible material, and enclosed by fences or walls constructed of non-combustible materials.

The fence or wall should be sufficiently high and secure to keep unauthorised persons from entering the site.

A hydrant system complying with *Australian Standard (AS) 2419.1 Fire Hydrant Installations* should be provided:

- When total quantity of outdoor storage exceeds 50 tonnes.
- Where the storage facility has or may be deemed a Special Hazard, i.e. large tyre facility.

NOTE: For further details regarding the provision of an adequate firefighting water supply, refer to DFES Guidance Note GN 1 *Firefighting Water Supply Considerations for Special Hazards.*

8.1. **External Tyre Storage Classification**

A facility having a tyre storage capacity not greater than one pile (i.e. less than 50 tonnes) is classified, (i.e. for the purpose of this GN or DWER Legislation) as a “**Small Tyre Facility**”.

A facility having a tyre storage capacity greater than one pile (i.e. 50 tonnes or more) is classified, (i.e. for the purpose of this GN or DWER Legislation) as a “**Large Tyre Facility**”.

8.2. **Small Tyre Facilities - Minimum Boundary Clearances for External Tyre Storage (less than 50 tonnes)**

- Tyre stacks should be no closer than 6m to all buildings on the same allotment having non-combustible external walls
- Tyre stacks should be no closer than 18m to all buildings on the same allotment having combustible external walls
- Tyre stacks should be no closer than 18m to allotment boundaries, except in the following circumstances
 - The far side of a public road reserve that adjoins the site may be considered the allotment boundary for the purposes of clearance, however tyre stacks must remain at least 6m back from the actual allotment boundary or boundaries facing the public road/s.
Where boundaries have non-combustible walls/windows/doors e.g., masonry, of equal or greater height to the tyre stacks (3.7m), the separation distance may be reduced to 6m, figure 12.

Figure 12: Minimum Boundary Clearances for Small Tyre Facilities

8.3. **Large Tyre Facilities – Minimum Boundary Clearances for External Tyre Storage (50 tonnes or more)**

Tyre stacks should be at least 18m from any boundary or building on the allotment, except that the far side of a public road reserve that adjoins the site may be considered the allotment boundary for the purposes of this GN, however tyre stacks must remain at least 6m back from the actual allotment boundary/s facing the public road/s, figure 13.
9. INTERNAL TYRE STORAGE

Bulk volumes of tyres stored inside a building are considered by DFES to be a Special Hazard in line with the provisions of the Building Code of Australia (BCA) Part E1.10, “Provisions for Special Hazards”. The following is provided as the DFES position to ensure the Special Hazard is adequately addressed to meet compliance with the BCA.

9.1. Smoke and Heat Venting

Internal tyre storage buildings which have a fire compartment floor area of 2000m² or more and contains more than 10 tonne of tyres are to have (in addition to other BCA requirements) smoke and heat vents complying with BCA specification E2.2c.
9.2. Sprinkler Protection

Internal tyre storage buildings which have a fire compartment floor area of 2000m² or more and contain more than 20 tonnes of tyres are to have a sprinkler system complying with *Australian Standard (AS) 2118.1. Automatic Fire Sprinkler Systems* (as amended), in particular Clause 11.7.2, Rubber Tyre Storage.

9.3. Internal Storage Configuration

Individual tyre stacks within buildings or structures should not exceed 3.7m in height and 30m² in area.

Stored tyres must remain at least 1m clear in all directions from the underside of the building’s roof or ceiling, roof structure members, lights (including light fixtures) and sprinkler heads. This minimum clearance is to be increased as necessary to facilitate operation of sprinkler systems as designed.

A minimum clearance of 1m must be maintained along paths of travel to required exits and firefighting equipment (e.g. fire hose reels, fire extinguishers & fire hydrants). The paths of travel must be kept clear and unobstructed at all times.

9.4. Non-Sprinkler Protected Buildings

A minimum clearance of 3m should be provided between stacks and any load bearing building elements in a non-sprinkler protected building. This will increase the time the building will remain structurally adequate during a fire incident and possibly facilitate an internal fire attack by DFES, figure 14.
9.5. Sprinkler Protected Buildings

Sprinkler system design must be suitable for the hazard in order to be effective. AS 2118.1 Automatic Fire Sprinkler Systems recognises the problematic nature of tyres involved in fire and as such AS 2118.1 Automatic Fire Sprinkler System Table A4.4 (A) lists tyre storage as a “Special Commodity” requiring specific storage considerations. Storage configuration guidance is provided in AS 2118.1 Automatic Fire Sprinkler System Section 11.

It is important for tyre storage operators taking occupancy of new or existing premises where an automatic fire sprinkler system is installed to ensure the storage configuration used is in line with the guidance provided by AS 2118.1 Automatic Fire Sprinkler System.

It is also important that when taking occupancy of existing premises where an automatic fire sprinkler system is installed that the design of the sprinkler system is suitable for the risk being introduced to the building. It is recommended that where this occurs, the building owner engages the original installer (where available) to inspect the sprinkler system, having consideration for tyre storage, and if found to be satisfactory to issue certification to the building owner to that affect - refer AS 2118.1 Automatic Fire Sprinkler System Section 14.2.4 & Appendix G.
10. SITE ACCESS FOR EMERGENCY FIRE SERVICES APPLIANCES

Any external tyre storage facility should have at least two site access points, each being not less than 4m wide, refer figure 8.1.

NOTE: Where the facility includes a structure that has been constructed to meet BCA Part C2.3 “Large Isolated Buildings”, in particular where a 6m wide vehicular access path and an 18m clear unobstructed distance around the building is required, or the building is subject to a performance solution that includes an emergency vehicular access strategy, the requirements will be the more stringent of either this GN or the BCA. This will ensure BCA compliance benchmarks are either met or exceeded, figure 15.

Figure 15: Site Entry Requirements - Any External Storage
11. **SITE CONTAINMENT OF ENVIRONMENTAL CONTAMINANTS**

Sites need to consider the way they contain contaminated water runoff from sprinkler systems, hydrants, other liquid products and firefighting activities, the following gives some guidance.

11.1. **Containment of Firefighting Water, Oil and Other Liquid Products of Combustion.**

If the tyre storage facility has a hydrant and/or sprinkler system, provision must be made for the retention of contaminated water run-off. Where the design of the systems does not demand a greater flow as determined through consideration of DFES Guidance Note GN1 Firefighting Water Supply Considerations for Special Hazards then the following provisions are to be met.

11.2. **Sprinkler Protected (internal storage)**

Capacity for firefighting water run-off is to be a calculated design:

- The calculated maximum sprinkler design output operating for a period of 90 minutes (simultaneous operation with hydrants) is to be included in the total fire water run-off
- Determine the number of hydrants operating simultaneously at 10 L/sec for four (4) hours using Table 1.

11.3. **Non-Sprinkler Protected (internal and external storage)**

If the storage facility does not have a sprinkler system, or the storage is in an external yard, the demand from a hydrant system will be greater. In this case, the number of operating hydrants should be determined using Table 1 and calculated for an operating time of four (4) hours. The total containment capacity should be determined as part of a site fire risk assessment and in conjunction with DFES Operations Command.

NOTE: Where adherence to AS 2419.1 Fire Hydrants Installations, is required by the BCA due to the presence of structures, the flow rates used to determine retention requirements will be the greater of this GN or AS 2419.1 Fire Hydrants Installations.
11.4. Fixed Monitors

Where fixed monitors are installed, the containment requirements for their discharge should be determined using the design flow rate based on the design data available from the system installer and determination of the number of monitors likely to be used simultaneously, or where the number likely to be used is unknown, the highest flow capacity of the system.

12. WATER SUPPLY (FIRE HYDRANT) REQUIREMENTS

Maintaining an adequate water supply source for use by DFES in the event of a tyre fire is a critical component of site operations. The availability of fire hydrants is essential to fire protection. Fire hydrants may be used to control the spread of fire, protect neighbouring properties, extinguish an outbreak of fire, or extinguish a fire controlled by an automatic fire protection system, such as sprinkler and foam systems.

Although fire hydrants are installed within properties for use by DFES, they may also be used by trained on-site personnel.

An adequate source of water is a fundamental consideration in the design of a fire hydrant installation and may comprise water from more than one source. A source based on four (4) hour duration at the flow rates determined using Table 1, or through consideration of DFES Guidance Note GN1 Firefighting Water Supply Considerations for Special Hazards (whichever is the greater) is regarded as the minimum safe quantity to enable DFES to commence an initial attack to limit fire spread, protect neighbouring properties and extinguish the fire.

NOTE: The flow rates given in AS 2419.1 Fire Hydrants Installations Table 3.3 for Protected Open Yards should not be considered adequate to protect “Tyre Storage” open yards.

It is suggested that the number of hydrants required to flow simultaneously for effective control of a fire in open yard tyre storage would be better determined using DFES Guidance Note GN1 Firefighting Water Supply Considerations for Special Hazard & Dangerous Goods Sites, or Table 1 below, whichever concludes the highest flow rate.
Number of Fire Hydrants Outlets to Discharge Simultaneously @ 10 litres per second. According to Size and Type of Tyre Storage Facility.

<table>
<thead>
<tr>
<th>Internal Storage</th>
<th>Fire Compartment Floor Area</th>
<th>Number of Outlets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Sprinklered Internal</td>
<td><5000 m²</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>≥5000 m²</td>
<td>4 Plus one additional outlet for each additional 5,000m² or part thereof</td>
</tr>
<tr>
<td>Sprinklered Internal</td>
<td><5000 m²</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>≥5000 m²</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External Storage</th>
<th>Area Used For Storage</th>
<th>Number of Outlets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Yard</td>
<td><5000 m²</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>≥5000 m²</td>
<td>4 Plus one additional outlet for each additional 5,000m² or part thereof</td>
</tr>
<tr>
<td>Fixed Monitor Protection</td>
<td>Area protected</td>
<td>Flow rate</td>
</tr>
<tr>
<td></td>
<td>As per design</td>
<td>Refer installer</td>
</tr>
</tbody>
</table>

Table 1: Reference table

Note: Except where modified by this GN, the fire hydrant system is to be otherwise designed, installed, and commissioned in accordance with AS 2419.1 Fire Hydrants Installations.

11. SHREDDED AND CRUMBED TYRES

(Referenced, UK Health and Safety Executive Briefing Note)

Further to the provisions above, additional provisions should be considered for facilities storing and handling crumbed or shredded tyres. In the production of rubber shred or crumb, whole tyres have to be chopped into small chips. In some cases, chips are ground much more finely and the metal content of the tyres is removed so that it can be safely used for human contact, e.g., playground soft-fall surfacing.

Chopping and grinding of tyres produces a low density, porous material through which air may percolate. The total surface area of tyre chips or crumb particles may also be large compared with the volume occupied. The combination of permeability to air-flow
and a high exposed surface area means that a combustible material such as rubber is potentially susceptible to spontaneous combustion, figure 16.

![Figure 16: Raw Material (whole tyres), tyre shred and tyre crumb](image)

12.1. **Practical Experience**

Spontaneous ignition of large stockpiles of tyre shred or deep landfill deposits has occurred on numerous occasions. Practical experience suggests auto-ignition normally occurs in large stockpiles (more than 3m deep).

Surface symptoms of the onset of spontaneous combustion can be subtle; a slight sulphurous odour, condensation aerosols emerging from vents or evidence of oil contamination of rainwater draining through the tyre shred. The fire may intensify from smouldering to flaming as the combustion wave reaches the surface or if the pile is disturbed allowing ingress of additional air.

12.2. **Comparisons with Other Materials**

Laboratory experiments show that rubber crumb and tyre shred are more susceptible to self-heating than cellulosic materials (like hay and straw) in conditions of high ambient temperature. Typically, a given volume of tyre shred will spontaneously ignite at a lower ambient temperature that an equivalent volume of hay. On the other hand, tyre shred is not as prone to biological heating that raises the internal temperature above ambient and may act as a trigger to spontaneous combustion.
Controlled experiments suggest that even piles of clean tyre shred or rubber crumb with a depth greater than around one metre may spontaneously ignite from ambient temperatures, if the level of ventilation is unfavourable. The initiation times are generally long (many weeks).

12.3. Factors Increasing Risk

The risk of ignition in practical circumstances may be raised by contamination of the tyres (which may allow biological heating in damp conditions) or by the rusting of exposed wires (which also generates heat).

12.4. Mitigation of Ignition Risk

Many of the standard methods of protection against spontaneous combustion are applicable to tyre shred:

- Control of material risk factors e.g. exposed metal content
- Piles should not be deeper than 3m
- Control of moisture levels
- Management of stock to prevent piles being left for long periods
- Sub-surface temperature monitoring
- Turning of piles at risk of spontaneous heating
- Minimising external heating e.g. shading from direct sunshine
- Control of ventilation by enclosure - if possible
- Localised sources of heat e.g. heated pipes, hot light bulbs, space heaters, braziers, shrink-wrapping equipment etc. should all be kept away from tyre shred piles.

13. FIRE FIGHTING

Once established, combustion in large piles of tyre shred and rubber crumb is difficult to suppress. Direct application of water or foam in situ does not generally provide effective extinguishment and may hamper control of oily runoff pollution.

The first priority is separation of unburned material from the fire to restrict the extent of spread. It may be possible to remove burning material from the fire and finally extinguish with water or by burial.

Without appropriate controls during fire-fighting there is potential for serious occupational exposure for fire service personnel and heavy equipment operators, from poly-aromatic hydrocarbons, oxides of sulphur and other harmful combustion products.
13.1. Design Guidelines to Minimise Internal Heating of Tyre Shred Fills

The following recommendations apply to tyre chip layers less than 3m deep and greater than 1m deep. Layers deeper than 3m are not recommended.

Lower standards may be acceptable for layers thinner than 1m.

- Tyre shreds shall be free of contaminants such as oil, grease, petrol, diesel fuels etc., that could create a fire hazard
- In no case should the tyre shreds contain the remains of tyres that have been subjected to fire
- Tyre shreds shall have a maximum of 25% (by weight) passing a 38mm sieve
- Tyre shreds shall have a maximum of 1% (by weight) passing a 4.75mm sieve
- Tyre shreds shall be free of fragments of wood, wood chips and other fibrous organic matter
- Tyre shreds shall have less than 1% (by weight) of metal fragments that are not at least partially encased in rubber
- Metal fragments that are partially encased in rubber shall protrude no more than 25mm from the cut end of the tyre shred on 75% of the pieces and by no more than 50mm on 100% of the pieces
- No direct contact between tyre shred and soil containing organic material e.g. topsoil
- Tyre shred should be separated from soil with a geotextile
- Use of drainage features at the base of the fill that could provide air access should be avoided

If temporarily stored on ground in piles with no containerisation (internal or external), the preferred configuration of piles for firefighting purposes is for long thin rows rather than square or round piles. This configuration permits the rapid creation of a fuel break in the material either side of the burning area resulting in a more manageable fire size.

13.2. Maximum Dimensions and Minimum Separation Distances for Rows of Shred or Crumb

- Max 20m long (followed by 5m gaps at ends)
- Max 3m high (to avoid heating & spontaneous combustion)
- Width of base 5m (approximate maximum)
- 6m between rows (to permit movement of earth moving equipment to create fuel break)
- No closer than 10m to structures (either same lot or neighbouring)
12.3 Firefighting Water Supply for Shred and Crumb Storage

Where a facility is used for storing crumbed or shredded tyre product only (not manufactured from whole tyres stored at the same site) and storage/handling of the product is managed in accordance with these guidance notes, compliance with the Deemed to satisfy hydrant flow provisions of AS 2419.1 Fire Hydrants Installations need only be met.
Fires in piles of tyre shred or crumb (as described above) are less intense than those in whole tyres and generally only produce a flame height of between 30 to 90cm making extinguishment possible with a fire water supply meeting the minimum requirements of AS 2419.1 Fire Hydrants Installations.

13.3. Fire Water Containment

Fire water containment capacity at a shred or crumb storage facility should be calculated in line with the fire hydrant flow rates prescribed in the AS 2419.1 Fire Hydrants Installations and cumulatively the discharge densities prescribed in AS 2118.1 Automatic Fire Sprinkler System where the facility is sprinkler protected.

NOTE: If whole tyres are present, the run-off containment must be considered in line with Part 11 of this GN.

CONCLUSION

It is anticipated by DFES that adherence to this GN by industry and regulators will be adequately prioritised and be considered an integral part of business continuity and environmental sustainability rather than an impost.

It is DFES’ view that if all of the strategies outlined in this GN are adopted in the design and management of a tyre storage or handling facility it will be as best as practicably possible operationally ready to support DFES objectives when responding to a fire incident.

This GN should be read in conjunction with DFES Guidance Note GN3 Fire Safety Considerations for Open Yard Storage.
REFERENCES

Australian Standard 2419.1 Fire Hydrants Systems: Design, Installation, and Commissioning
Australian Standard 2118.1 Automatic Fire Sprinkler Systems
DFES Guidance Note GN1 Firefighting Water Supply Considerations - Special Hazard & Dangerous Goods Sites
UK Health and Safety Executive. Spontaneous Heating of Piled Tyre Shred and Rubber Crumb – Briefing Note.

LEGISLATION:

WA Building Act 2011
WA Building Regulations 2012 (as amended)
Fire Brigades Act 1942
Environmental Protection Regulations 1987
Department of Water and Environment Regulations
Environmental Protection (Controlled Waste) Regulations 2004 – transport
Environmental Protection Regulations 1987 (Part 6, Schedule 1 and Schedule 5) - storage, handling, transportation and Disposal
Environmental Protection Act 1986
Please Note: This is a controlled document. DFES Guidance Notes are available on the DFES Website: www.dfes.wa.gov.au under Regulation and Compliance.

Should the information provided in this Guidance Note require further clarification, please contact DFES Critical Infrastructure/Heavy Industry (08) 9395 9300.

Disclaimer

The information contained in this publication is provided voluntarily as a public service by the Department of Fire and Emergency Services (DFES). This publication has been prepared in good faith and is derived from sources believed to be reliable and accurate at the time of publication. Nevertheless, the reliability and accuracy of the information cannot be guaranteed and DFES expressly disclaims liability for any act or omission based on reliance on the information and for any consequences whether direct or indirect, arising from such act or omission. The publication is intended to be a guide only and readers should obtain their own independent advice and make their own necessary enquiries.

Contact us

Department of Fire and Emergency Services
Emergency Services Complex
20 Stockton Bend COCKBURN CENTRAL
PO Box P1174 Perth WA 6844
Tel: +61 8 9395 9300
Email: dfes@dfes.wa.gov.au
Web: www.dfes.wa.gov.au